Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
Trends Pharmacol Sci ; 44(9): 558-560, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296035

RESUMO

Allograft vasculopathy (AV) leads to chronic rejection of organ transplants, but its causes are obscure. New research from the Jane-Wit laboratory showed that Sonic Hedgehog (SHH) signalling from damaged graft endothelium drives vasculopathy by promoting proinflammatory cytokine production and NLRP3-inflammasome activation in alloreactive CD4+PTCH1hiPD-1hiT memory cells, offering new diagnostic and therapeutic strategies.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Humanos , Proteínas Hedgehog/fisiologia , Transdução de Sinais/fisiologia , Aloenxertos
2.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355083

RESUMO

Morphogens of the Hh family trigger gene expression changes in receiving cells in a concentration-dependent manner to regulate their identity, proliferation, death or metabolism, depending on the tissue or organ. This variety of responses relies on a conserved signaling pathway. Its logic includes a negative-feedback loop involving the Hh receptor Ptc. Here, using experiments and computational models we study and compare the different spatial signaling profiles downstream of Hh in several developing Drosophila organs. We show that the spatial distributions of Ptc and the activator transcription factor CiA in wing, antenna and ocellus show similar features, but are markedly different from that in the compound eye. We propose that these two profile types represent two time points along the signaling dynamics, and that the interplay between the spatial displacement of the Hh source in the compound eye and the negative-feedback loop maintains the receiving cells effectively in an earlier stage of signaling. These results show how the interaction between spatial and temporal dynamics of signaling and differentiation processes may contribute to the informational versatility of the conserved Hh signaling pathway.


Assuntos
Drosophila , Proteínas Hedgehog , Transdução de Sinais , Drosophila/embriologia , Animais , Proteínas Hedgehog/fisiologia , Asas de Animais/embriologia , Olho Composto de Artrópodes/embriologia
3.
J Invest Dermatol ; 142(6): 1737-1748.e5, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34922948

RESUMO

Patients suffering from large scars such as burn victims not only encounter aesthetic challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles rarely regenerate within the healing wound. Because they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic hair follicle morphogenesis and are particularly involved in wound healing because they orchestrate extracellular matrix remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog signaling. In this study, we show that Hedgehog signaling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, whereas Hedgehog signaling in papillary fibroblasts is essential to induce de novo hair follicle formation within the healing wound.


Assuntos
Folículo Piloso , Proteínas Hedgehog , Regeneração , Transdução de Sinais , Cicatrização , Derme/metabolismo , Fibroblastos/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proteínas Hedgehog/fisiologia , Humanos , Qualidade de Vida , Regeneração/fisiologia , Cicatrização/fisiologia
4.
Sci China Life Sci ; 65(3): 500-514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34505970

RESUMO

The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.


Assuntos
Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas Hedgehog/fisiologia , Animais , Centrossomo/fisiologia , Humanos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/fisiologia
5.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34658337

RESUMO

Activating LRRK2 mutations cause Parkinson's disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.


Assuntos
Astrócitos/fisiologia , Cílios/fisiologia , Proteínas Hedgehog/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurônios/fisiologia , Transdução de Sinais , Animais , Encéfalo , Feminino , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Camundongos
6.
ESMO Open ; 6(6): 100284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689002

RESUMO

BACKGROUND: Smoothened (SMO) inhibitors, blocking the sonic hedgehog pathway, have been approved for advanced basal cell carcinoma (aBCC). Safety analyses reveal a high rate of adverse events (AEs) and, most of the time, vismodegib is most commonly stopped when the best overall response is reached. The long-term evolution of aBCC after vismodegib discontinuation is poorly described. The aim of this study is to evaluate the efficacy and safety of the SMO inhibitors (SMOis) available (vismodegib and sonidegib) following rechallenge after complete response (CR) following an initial treatment by vismodegib. MATERIALS AND METHODS: This real-life, retrospective, multicenter and descriptive study is based on an extraction from the CARADERM accredited database, including 40 French regional hospitals, of patients requiring BCC systemic treatment. RESULTS: Of 303 patients treated with vismodegib, 110 achieved an initial CR. The vast majority of these patients (98.2%) stopped vismodegib, notably due to poorly tolerated AEs. The CARADERM database provided a median follow-up of 21 months (13.5-36.0 months) after CR. Of the 110 patients, 48.1% relapsed after a median relapse-free survival of 24 months (13.0-38.0 months). Among them, 35 patients were retreated by an SMOi and the overall response rate was 65.7% (34.3% of CR and 31.4% of partial response). The median duration of retreatment was 6.0 months (4.0-9.5 months). CONCLUSION: Our real-life study, carried out on patients with complex clinical pictures, shows that after treatment discontinuation, 48.1% of patients achieved CR relapse within an average of 24 months (13.0-38.0 months). It emphasized that even though rechallenge can be considered as a therapeutic option, efficacy seems to decrease, suggesting the development of resistance mechanisms.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Neoplasias Cutâneas , Antineoplásicos/efeitos adversos , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Proteínas Hedgehog/fisiologia , Proteínas Hedgehog/uso terapêutico , Humanos , Recidiva Local de Neoplasia/induzido quimicamente , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Cutâneas/tratamento farmacológico
7.
Future Oncol ; 17(31): 4185-4206, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34342489

RESUMO

Triple-negative breast cancer (TNBC) is the most complex, aggressive and fatal subtype of breast cancer. Owing to the lack of targeted therapy and heterogenic nature of TNBC, chemotherapy remains the sole treatment option for TNBC, with taxanes and anthracyclines representing the general chemotherapeutic regimen in TNBC therapy. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. Breast cancer stem cells (BCSCs) are one of the major causes for the development of chemoresistance in TNBC patients. After surviving the chemotherapy damage, the presence of BCSCs results in relapse and recurrence of TNBC. Several pathways are known to regulate BCSCs' survival, such as the Wnt/ß-catenin, Hedgehog, JAK/STAT and HIPPO pathways. Therefore it is imperative to target these pathways in the context of eliminating chemoresistance. In this review we will discuss the novel strategies and various preclinical and clinical studies to give an insight into overcoming TNBC chemoresistance. We present a detailed account of recent studies carried out that open an exciting perspective in relation to the mechanisms of chemoresistance.


Assuntos
Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteínas Hedgehog/fisiologia , Via de Sinalização Hippo , Humanos , NF-kappa B/fisiologia , Receptores Notch/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt
8.
PLoS Biol ; 19(8): e3001367, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379617

RESUMO

Damage in the nervous system induces a stereotypical response that is mediated by glial cells. Here, we use the eye disc of Drosophila melanogaster as a model to explore the mechanisms involved in promoting glial cell response after neuronal cell death induction. We demonstrate that these cells rapidly respond to neuronal apoptosis by increasing in number and undergoing morphological changes, which will ultimately grant them phagocytic abilities. We found that this glial response is controlled by the activity of Decapentaplegic (Dpp) and Hedgehog (Hh) signalling pathways. These pathways are activated after cell death induction, and their functions are necessary to induce glial cell proliferation and migration to the eye discs. The latter of these 2 processes depend on the function of the c-Jun N-terminal kinase (JNK) pathway, which is activated by Dpp signalling. We also present evidence that a similar mechanism controls glial response upon apoptosis induction in the leg discs, suggesting that our results uncover a mechanism that might be involved in controlling glial cells response to neuronal cell death in different regions of the peripheral nervous system (PNS).


Assuntos
Olho Composto de Artrópodes/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Hedgehog/fisiologia , Neuroglia/fisiologia , Animais , Apoptose , Movimento Celular , Olho Composto de Artrópodes/citologia , Drosophila melanogaster/citologia , Sistema de Sinalização das MAP Quinases
9.
Neural Plast ; 2021: 8706400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221003

RESUMO

Neuroinflammation plays important roles in the pathogenesis and progression of altered neurodevelopment, sensorineural hearing loss, and certain neurodegenerative diseases. Hyperoside (quercetin-3-O-ß-D-galactoside) is an active compound isolated from Hypericum plants. In this study, we investigate the protective effect of hyperoside on neuroinflammation and its possible molecular mechanism. Lipopolysaccharide (LPS) and hyperoside were used to treat HT22 cells. The cell viability was measured by MTT assay. The cell apoptosis rate was measured by flow cytometry assay. The mRNA expression levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were determined by quantitative reverse transcription polymerase chain reaction. The levels of oxidative stress indices superoxide dismutase (SOD), reactive oxygen species (ROS), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were measured by the kits. The expression of neurotrophic factor and the relationship among hyperoside, silent mating type information regulation 2 homolog-1 (SIRT1) and Wnt/ß-catenin, and sonic hedgehog was examined by western blotting. In the LPS-induced HT22 cells, hyperoside promotes cell survival; alleviates the level of IL-1ß, IL-6, IL-8, TNF-α, ROS, MDA, Bax, and caspase-3; and increases the expression of CAT, SOD, GSH, Bcl-2, BDNF, TrkB, and NGF. In addition, hyperoside upregulated the expression of SIRT1. Further mechanistic investigation showed that hyperoside alleviated LPS-induced inflammation, oxidative stress, and apoptosis by upregulating SIRT1 to activate Wnt/ß-catenin and sonic hedgehog pathways. Taken together, our data suggested that hyperoside acts as a protector in neuroinflammation.


Assuntos
Neurônios/efeitos dos fármacos , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/sangue , Avaliação Pré-Clínica de Medicamentos , Proteínas Hedgehog/fisiologia , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Sirtuína 1/genética , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
10.
Sci Rep ; 11(1): 14880, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290270

RESUMO

Prostate cancer is the second most frequent cancer diagnosed in men worldwide. Localized disease can be successfully treated, but advanced cases are more problematic. After initial effectiveness of androgen deprivation therapy, resistance quickly occurs. Therefore, we aimed to investigate the role of Hedgehog-GLI (HH-GLI) signaling in sustaining androgen-independent growth of prostate cancer cells. We found various modes of HH-GLI signaling activation in prostate cancer cells depending on androgen availability. When androgen was not deprived, we found evidence of non-canonical SMO signaling through the SRC kinase. After short-term androgen deprivation canonical HH-GLI signaling was activated, but we found little evidence of canonical HH-GLI signaling activity in androgen-independent prostate cancer cells. We show that in androgen-independent cells the pathway ligand, SHH-N, non-canonically binds to the androgen receptor through its cholesterol modification. Inhibition of this interaction leads to androgen receptor signaling downregulation. This implies that SHH-N activates the androgen receptor and sustains androgen-independence. Targeting this interaction might prove to be a valuable strategy for advanced prostate cancer treatment. Also, other non-canonical aspects of this signaling pathway should be investigated in more detail and considered when developing potential therapies.


Assuntos
Androgênios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regulação para Baixo/genética , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/fisiologia
11.
Cereb Cortex ; 31(10): 4730-4741, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34002221

RESUMO

The neocortex, the center for higher brain function, emerged in mammals and expanded in the course of evolution. The expansion of outer radial glia (oRGs) and intermediate progenitor cells (IPCs) plays key roles in the expansion and consequential folding of the neocortex. Therefore, understanding the mechanisms of oRG and IPC expansion is important for understanding neocortical development and evolution. By using mice and human cerebral organoids, we previously revealed that hedgehog (HH) signaling expands oRGs and IPCs. Nevertheless, it remained to be determined whether HH signaling expanded oRGs and IPCs in vivo in gyrencephalic species, in which oRGs and IPCs are naturally expanded. Here, we show that HH signaling is necessary and sufficient to expand oRGs and IPCs in ferrets, a gyrencephalic species, through conserved cellular mechanisms. HH signaling increases oRG-producing division modes of ventricular radial glia (vRGs), oRG self-renewal, and IPC proliferation. Notably, HH signaling affects vRG division modes only in an early restricted phase before superficial-layer neuron production peaks. Beyond this restricted phase, HH signaling promotes oRG self-renewal. Thus, HH signaling expands oRGs and IPCs in two distinct but continuous phases during cortical development.


Assuntos
Córtex Cerebral/fisiologia , Células Ependimogliais/fisiologia , Furões/fisiologia , Proteínas Hedgehog/fisiologia , Transdução de Sinais/fisiologia , Animais , Córtex Cerebral/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Gravidez
12.
Dev Biol ; 477: 177-190, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038742

RESUMO

Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.


Assuntos
Nadadeiras de Animais/embriologia , Células Epidérmicas/fisiologia , Epiderme/embriologia , Proteínas Hedgehog/fisiologia , Morfogênese , Proteínas de Peixe-Zebra/fisiologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/metabolismo , Animais , Benzamidas/farmacologia , Movimento Celular , Epiderme/metabolismo , Receptor Patched-2/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/fisiologia , Peixe-Zebra
13.
Pharmacol Res ; 168: 105595, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823219

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Neoplasias Pancreáticas/etiologia , Pancreatite/complicações , Células Acinares/fisiologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Hedgehog/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/fisiologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/fisiologia , Transdução de Sinais , Microambiente Tumoral
14.
Can J Physiol Pharmacol ; 99(9): 910-920, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33617370

RESUMO

The present study evaluated whether epigallocatechin-3-gallate (EGCG) effectively attenuates tumor growth in colon cancer cells and in the xenografts of nude mice and investigated the underlying mechanisms by focusing on the sonic hedgehog (Shh) and phosphoinositide 3-kinase (PI3K) pathways. Three kinds of colon cancer cells and BALB/c nude mice were used to evaluate the antiproliferative effect of EGCG. The apoptosis, migration, and invasion of colon cancer cells were analyzed to explore the toxicity effect of EGCG on colon cancer cells. Western blotting was used to demonstrate the expression levels of related proteins. The results showed that EGCG exhibited an antiproliferative effect against colon cancer cells in a dose-dependent manner with low toxicity against normal colon epithelial cells. Administration of EGCG caused significant apoptosis and inhibited the migration and invasion of colon cancer cells. The toxic effect of EGCG on colon cancer cells was accompanied by downregulation of the Shh and PI3K/Akt pathways. In addition, EGCG reduced tumor volume and weight without affecting the body weight of nude mice and inhibited the activation of the Shh and PI3K/AKT pathways in tumor tissue. Further study showed that purmorphamine (smoothened (Smo) agonist) or insulin like growth factor-1 (IGF-1, PI3K agonist) partly abolished the effect of EGCG on cell proliferation, migration, and apoptosis. Cyclopamine (Smo inhibitor) and LY294002 (PI3K inhibitor) showed the similar toxic effects as EGCG on colon cancer cells. In conclusion, EGCG inhibited colon tumor growth via downregulation of the Shh and PI3K pathways and may be a potential chemotherapeutic agent against colon cancer.


Assuntos
Catequina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Proteínas Hedgehog/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Apoptose/efeitos dos fármacos , Catequina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos
15.
Clin Cancer Res ; 27(7): 2023-2037, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495315

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Proteínas Hedgehog/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Transdução de Sinais/fisiologia , Microambiente Tumoral
16.
Int J Dev Biol ; 65(4-5-6): 195-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930382

RESUMO

Rax (Rx) genes encode paired-type homeodomain-containing transcription factors present in virtually all metazoan groups. In vertebrates, studies in fish, amphibian, chick and mouse models have revealed that these genes play important roles in the development of structures located at the anterior portion of the central nervous system, in particular the eyes, the hypothalamus and the pituitary gland. In addition, human patients with eye and brain defects carry mutations in the two human Rax paralogues, RAX and RAX2. Here, we review work done in the last years on Rax genes, focusing especially on the function that mouse Rax and its zebrafish homologue, rx3, play in hypothalamic and pituitary development. Work on both of these model organisms indicate that Rax genes are necessary for the patterning, growth and differentiation of the hypothalamus, in particular the ventro-tuberal and dorso-anterior hypothalamus, where they effect their action by controlling expression of the secreted signalling protein, Sonic hedgehog (Shh). In addition, Rax/rx3 mutations disturb the development of the pituitary gland, mimicking phenotypes observed in human subjects carrying mutations in the RAX gene. Thus, along with their crucial role in eye morphogenesis, Rax genes play a conserved role in the development of the hypothalamus and adjacent structures in the vertebrate clade.


Assuntos
Proteínas do Olho , Proteínas de Homeodomínio , Hipotálamo/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Fatores de Transcrição , Peixe-Zebra , Animais , Proteínas do Olho/fisiologia , Proteínas Hedgehog/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Fatores de Transcrição/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
17.
Brain Res ; 1751: 147204, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189691

RESUMO

BACKGROUND: Peripheral nerve injuries are a common clinical problem which may result in permanent loss of motor or sensory function. A better understanding of the signaling pathways that lead to successful nerve regeneration may help in discovering new therapeutic targets. The Hedgehog (Hh) signaling pathway plays significant roles in nerve development and regeneration. In a mouse model of facial nerve injury, Hedgehog-responsive fibroblasts increase in number both at the site of injury and within the distal nerve. However, the role of these cells in facial nerve regeneration is not fully understood. We hypothesize that the Hh pathway plays an angiogenic and pro-migratory role following facial nerve injury. METHODS: Hedgehog pathway modulators were applied to murine endoneurial fibroblasts isolated from the murine facial nerve. The impact of pathway modulation on endoneurial fibroblast migration and cell proliferation was assessed. Gene expression changes of known Hedgehog target genes and the key angiogenic factor Vegf-A were determined by qPCR. In vivo, mice were treated with pathway agonist (SAG21k) and injured facial nerve specimens were analyzed via immunofluorescence and in situ hybridization. RESULTS: Hedgehog pathway activation in facial nerve fibroblasts via SAG21k treatment increases Gli1 and Ptch1 expression, the rate of cellular migration, and Vegf-A expression in vitro. In vivo, expression of Gli1 and Vegf-A expression appears to increase after injury, particularly at the site of nerve injury and the distal nerve, as detected by immunofluorescence and in situ hybridization. Additionally, Gli1 transcripts co-localize with Vegf-A following transection injury to the facial nerve. DISCUSSION: These findings describe an angiogenic and pro-migratory role for the Hedgehog pathway mediated through effects on nerve fibroblasts. Given the critical role of Vegf-A in nerve regeneration, modulation of this pathway may represent a potential therapeutic target to improve facial nerve regeneration following injury.


Assuntos
Traumatismos do Nervo Facial/metabolismo , Proteínas Hedgehog/metabolismo , Regeneração Nervosa/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Nervo Facial/metabolismo , Traumatismos do Nervo Facial/terapia , Feminino , Fibroblastos/metabolismo , Proteínas Hedgehog/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
18.
Oncogene ; 40(2): 396-407, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159168

RESUMO

The immune microenvironment of tumors can play a critical role in promoting or inhibiting tumor progression depending on the context. We present evidence that tumor-associated macrophages/microglia (TAMs) can promote tumor progression in the sonic hedgehog subgroup of medulloblastoma (SHH-MB). By combining longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) and immune profiling of a sporadic mouse model of SHH-MB, we found the density of TAMs is higher in the ~50% of tumors that progress to lethal disease. Furthermore, reducing regulatory T cells or eliminating B and T cells in Rag1 mutants does not alter SHH-MB tumor progression. As TAMs are a dominant immune component in tumors and are normally dependent on colony-stimulating factor 1 receptor (CSF1R), we treated mice with a CSF1R inhibitor, PLX5622. Significantly, PLX5622 reduces a subset of TAMs, prolongs mouse survival, and reduces the volume of most tumors within 4 weeks of treatment. Moreover, concomitant with a reduction in TAMs the percentage of infiltrating cytotoxic T cells is increased, indicating a change in the tumor environment. Our studies in an immunocompetent preclinical mouse model demonstrate TAMs can have a functional role in promoting SHH-MB progression. Thus, CSF1R inhibition could have therapeutic potential for a subset of SHH-MB patients.


Assuntos
Neoplasias Cerebelares/prevenção & controle , Modelos Animais de Doenças , Proteínas Hedgehog/fisiologia , Meduloblastoma/prevenção & controle , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proliferação de Células , Neoplasias Cerebelares/etiologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Humanos , Masculino , Meduloblastoma/etiologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral
19.
Neurobiol Dis ; 150: 105236, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383187

RESUMO

Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.


Assuntos
Encéfalo/anormalidades , Cílios/genética , Ciliopatias/embriologia , Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Prosencéfalo/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Encéfalo/embriologia , Cerebelo/anormalidades , Cerebelo/embriologia , Transtornos da Motilidade Ciliar/embriologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Encefalocele/embriologia , Encefalocele/genética , Anormalidades do Olho/embriologia , Anormalidades do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Humanos , Doenças Renais Císticas/embriologia , Doenças Renais Císticas/genética , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Retina/anormalidades , Retina/embriologia , Retinite Pigmentosa/embriologia , Retinite Pigmentosa/genética , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
20.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171880

RESUMO

Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.


Assuntos
Proteínas Hedgehog/fisiologia , Inteínas/fisiologia , Processamento de Proteína/fisiologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Proteínas Hedgehog/genética , Inteínas/genética , Simulação de Dinâmica Molecular , Mycobacterium/genética , Mycobacterium/metabolismo , Processamento de Proteína/genética , Splicing de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...